The atomic detail of an evaporating meniscus

نویسنده

  • Jonathan B. Freund
چکیده

Atomistic simulations of a simple Lennard-Jones fluid are used to investigate the very near-wall dynamics and thermodynamics of evaporating menisci. The specific configuration considered is a two-dimensional sin the meand liquid drop centered on a cold spot on an atomically smooth solid wall with evaporating menisci extending from it onto hotter regions of the wall. In the four cases simulated, the interaction energy between the solid atoms, which make up the wall, and the fluid atoms, which are equilibrated in liquid and vapor phases, is varied by a factor of about 5. Results are interpreted in the context of a recently proposed continuum model fV. S. Ajaev and G. M. Homsy, “Steady vapor bubbles in rectangular microchannels,” J. Colloid. Interface Sci. 240, 259 s2001dg, which is based on a low-capillary-number asymptotic analysis of the flow and heat equations. In this model, the nonlocal influence of the wall is modeled by a disjoining pressure, a common linearized nonequilibrium model is assumed for evaporation kinetics, and the interface curvature impacts thermodynamics through its effect on the local pressure. However, this model and others like it neglect both the atomic granularity of the fluid and any scale associated changes in its properties in the thinnest regions of the evaporating meniscus, which are the subject of this study. Quantitative agreement for meniscus shape and evaporative mass flux is found for a weakly wetting case, but the model must be modified in a straightforward way for more strongly wetting cases to account for a layer of nearly fixed fluid atoms on the wall. A finite solid-liquid interface thermal sKapitzad resistance is found to be important, and the continuum model is reformulated accordingly. With an appropriate Kapitza resistance value the reformulation yields accurate predictions using the actual wall temperature as a boundary condition, rather than the fluid’s temperature at the wall. © 2005 American Institute of Physics. fDOI: 10.1063/1.1843871g

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study of Heat Transfer in an Evaporating Meniscus on a Moving Heated Surface

A stable meniscus is formed by a circular nozzle dispensing water over a heated circular face of a rotating cylindrical copper block. The nozzle is offset from the axis of rotation of the copper block and thus a moving meniscus is formed on the surface. The water flow rate, heater surface temperature, and the speed of rotation are controlled to provide a stable meniscus with continuous evaporat...

متن کامل

Negative pressure characteristics of an evaporating meniscus at nanoscale

This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two nano-channels filled with the same liquid. Evaporation is simulated in the meniscus by increasing the temperature of the platinum wall for two different cases. Non-evaporating film...

متن کامل

A Temporal Phase Unwrapping Algorithm Applied to Dynamic Interferograms Generated in Evaporating Picoliter Liquid Samples

Micromachined picoliter vials in silicon dioxide with a typical depth of 6μm are filled with a liquid sample. Epi-illuminated microscopic imaging during evaporation of the liquid shows dynamic fringe patterns. These fringe patterns are caused by interference between the direct part and the reflected part of an incident plane wave (reflected from the bottom of the vial). The optical path differe...

متن کامل

Temperature measurements near the contact line of an evaporating meniscus V-groove

Evaporation from a meniscus of heptane liquid in a V-groove geometry is experimentally investigated. A thin layer of titanium coated on the backside of the fused quartz groove is electrically heated to provide a constant heat flux. The temperature profile in the evaporating thin film region of the extended meniscus is measured using high-resolution infrared thermography and the temperature supp...

متن کامل

Numerical Study of an Evaporating Meniscus on a Moving Heated Surface

The present study is performed to numerically analyze an evaporating meniscus bounded between the advancing and receding interfaces on a moving heated surface. The numerical scheme developed for analyzing interface motion during bubble growth in pool boiling has been applied. A column of liquid is placed between a nozzle outlet and a moving wall, and calculations are done in two dimensions with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005